Compare commits

...

5 commits

Author SHA1 Message Date
Savely Krendelhoff 511b7a940c
Add README.md 2025-09-06 17:13:53 +07:00
Savely Krendelhoff 79795215ac
Add taskfile 2025-09-06 17:13:52 +07:00
Savely Krendelhoff d71b5ff2b4
Add executable 2025-09-06 17:13:51 +07:00
Savely Krendelhoff 12b774312f
Add app layer tests 2025-09-06 17:13:50 +07:00
Savely Krendelhoff cb69b72ce3
Implement application layer 2025-09-06 17:13:49 +07:00
6 changed files with 657 additions and 0 deletions

203
README.md Normal file
View file

@ -0,0 +1,203 @@
# Currency Converter CLI
A command-line utility for converting currencies using CoinMarketCap API, built with Go following Clean Architecture principles.
## Quick Start
### Prerequisites
- Go 1.19 or higher
- CoinMarketCap API key (get from https://coinmarketcap.com/api/)
### Installation & Setup
1. Clone the repository
2. Set your API key:
```bash
export CMC_API_KEY=your_api_key_here
```
### Usage
#### Using Taskfile (Recommended)
```bash
# Install task runner (if not already installed)
go install github.com/go-task/task/v3/cmd/task@latest
# Build and run with parameters
task run -- 123.45 USD BTC
task run -- 1 BTC USD
task run -- 100 EUR BTC
# Other available tasks
task build # Build the application
task test # Run tests
task test-verbose # Run tests with verbose output
task clean # Clean build artifacts
task all # Full build pipeline
```
#### Using Go directly
```bash
# Build the application
go build -o bin/converter ./cmd/converter
# Run conversions
./bin/converter 123.45 USD BTC
./bin/converter 1 BTC USD
./bin/converter 100 EUR BTC
```
#### Using Go commands directly
```bash
# Run tests
go test ./...
# Build manually
mkdir -p bin && go build -o bin/converter ./cmd/converter
# Run with API key
CMC_API_KEY=your_key ./bin/converter 50 USD BTC
```
## Project Structure
```
converter/
├── cmd/converter/ # CLI application entry point
│ └── main.go # Main function, argument parsing, DI setup
├── app/ # Application layer (Use Cases)
│ ├── convert_currency.go # Core use case implementation
│ ├── convert_currency_test.go # Use case tests with mocks
│ └── mocks/ # Generated mocks (mockery)
│ └── RateProvider.go # Mock for RateProvider interface
├── domain/ # Domain layer (Business Logic)
│ ├── entities.go # Value objects (Currency, Money, Rate)
│ ├── entities_test.go # Domain entity tests
│ ├── services.go # Domain service (CurrencyConverter)
│ └── services_test.go # Domain service tests
├── infrastructure/ # Infrastructure layer (External APIs)
│ └── coinmarketcap/ # CoinMarketCap API client
│ ├── client.go # HTTP client with retry/fallback logic
│ └── models.go # API response DTOs
├── Taskfile.yml # Task runner configuration
├── go.mod # Go module definition
├── go.sum # Go module checksums
├── TASK.md # Original task requirements (Russian)
├── CLAUDE.md # Project configuration for Claude Code
└── README.md # This file
```
### Architecture Overview
This project implements **Clean Architecture** with clear separation of concerns:
- **Domain Layer**: Pure business logic with no external dependencies
- Value objects (Currency, Money, Rate) with validation
- Domain services (CurrencyConverter) for business operations
- Domain errors and business rules
- **Application Layer**: Use cases that orchestrate domain logic
- ConvertCurrencyUseCase: Main conversion workflow
- RateProvider interface: Defines contract for rate fetching
- DTO to domain object mapping with reversal detection
- **Infrastructure Layer**: External integrations and technical details
- CoinMarketCap API client with automatic retry logic
- HTTP error handling and response mapping
- Rate reversal logic (USD→BTC becomes BTC→USD inverted)
- **CLI Layer**: User interface and dependency injection
- Command-line parsing and validation
- Environment variable configuration
- Error formatting for end users
## Testing
The project includes comprehensive test coverage using **testify** and **mockery**:
```bash
# Run all tests
task test
# or
go test ./...
# Run tests with verbose output
task test-verbose
# or
go test -v ./...
# Run tests with coverage
task test-coverage
# or
go test -coverprofile=coverage.out ./...
go tool cover -html=coverage.out
```
### Test Structure
- **Unit Tests**: Domain entities and services with table-driven tests
- **Use Case Tests**: Application layer with generated mocks using testify/mockery
- **Mock Generation**: Use `task generate-mocks` to regenerate mocks
## Architecture Decisions
### Why decimal.Decimal for Money Handling
We chose `shopspring/decimal` over floating-point numbers and other alternatives for the following critical reasons:
#### Financial Accuracy Requirements
- Floating point arithmetic cannot represent decimal numbers exactly
- Example: `0.1 + 0.2 ≠ 0.3` in floating-point arithmetic
- Currency conversion errors compound with multiple operations
- CoinMarketCap API returns exchange rates with high precision (8+ decimal places)
#### Real-world Impact
```go
// Problematic with float64
Bad: float64(123.45) * float64(0.000016) = 0.001975200000000001
// Accurate with decimal.Decimal
Good: decimal(123.45) * decimal(0.000016) = 0.001975200000000000
```
#### Industry Standards
- Banking and financial systems never use floating-point for monetary calculations
- Major payment APIs (Stripe, PayPal) use string representations to avoid precision loss
- `shopspring/decimal` is the Go standard for financial applications (used by Kubernetes billing, trading systems)
#### Alternative Analysis
- **big.Rat**: Overkill for this use case, overly complex API for basic currency operations
- **Integer scaling**: Requires manual precision management, error-prone across currencies with different decimal places (USD=2, BTC=8, ETH=18)
- **float64**: Unacceptable precision loss for financial data
#### Performance vs Precision Trade-off
- Using integer scaling would significantly increase development complexity with manual precision management across different currency types
- decimal.Decimal adds only microseconds vs potentially costly conversion errors
- Ensures user trust by avoiding strange rounding artifacts
- Better maintainability with clear intent and JSON-friendly serialization
**Conclusion**: The cost of precision errors in financial software far exceeds the minimal performance overhead of using decimal.Decimal.
### Currency Handling Strategy
Our implementation uses CoinMarketCap's `/v1/cryptocurrency/quotes/latest` endpoint with intelligent fallback logic:
- **Direct request**: Try the requested conversion (e.g., `USD → BTC`)
- **Fallback on empty data**: If no data returned, try reverse direction (`BTC → USD`) and invert the rate
- **Error handling**: Distinguish between unknown symbols, invalid parameters, and network issues
This approach handles both crypto-to-fiat and fiat-to-crypto conversions using only the cryptocurrency endpoint:
- **BTC → USD**: Direct API call works
- **USD → BTC**: API call fails (USD not in crypto DB), retry as BTC → USD, then invert rate
The automatic fallback with rate inversion eliminates the need for separate fiat currency handling while maintaining mathematical precision using decimal arithmetic.
### Currency Precision Strategy
To keep the implementation simple, we use a uniform precision rule:
- **All currencies**: 8 decimal places (covers cryptocurrency precision requirements)
This approach handles high-precision cryptocurrencies properly while being acceptable for fiat currencies (even though they typically use 2 decimal places). In a production environment, we would maintain per-currency precision metadata, but 8 decimals covers all practical use cases without overcomplicating the initial implementation.
## Development
This project follows Clean Architecture principles and SOLID design patterns as specified in the requirements.

59
Taskfile.yml Normal file
View file

@ -0,0 +1,59 @@
version: '3'
tasks:
test:
desc: Run all tests
cmds:
- go test ./...
test-verbose:
desc: Run all tests with verbose output
cmds:
- go test -v ./...
test-coverage:
desc: Run tests with coverage report
cmds:
- go test -coverprofile=coverage.out ./...
- go tool cover -html=coverage.out -o coverage.html
- echo "Coverage report generated at coverage.html"
build:
desc: Build the application
cmds:
- go build -o bin/converter ./cmd/converter
run:
desc: "Run the application with parameters (usage: task run -- <amount> <from> <to>)"
deps: [build]
cmds:
- "./bin/converter {{.CLI_ARGS}}"
clean:
desc: Clean build artifacts and coverage files
cmds:
- rm -rf bin/
- rm -f coverage.out coverage.html
lint:
desc: Run linter (if available)
cmds:
- go vet ./...
- go fmt ./...
deps:
desc: Download dependencies
cmds:
- go mod download
- go mod tidy
generate-mocks:
desc: Generate mocks using mockery
cmds:
- go run github.com/vektra/mockery/v2@latest --name=RateProvider --dir=./app --output=./app/mocks
all:
desc: Run full build pipeline
deps: [deps, generate-mocks, lint, test, build]
cmds:
- echo "Build pipeline completed successfully!"

122
app/convert_currency.go Normal file
View file

@ -0,0 +1,122 @@
package app
import (
"context"
"converter/domain"
"converter/infrastructure/coinmarketcap"
"fmt"
"strings"
"github.com/shopspring/decimal"
)
// Constants
const (
CurrencyPrecision = 8 // All currencies use 8 decimal precision
)
// RateProvider defines the contract for fetching exchange rates
// Note: The returned RateDTO may contain a reversed rate (e.g., if requesting USD->BTC
// but only BTC->USD is available), indicated by FromCode/ToCode being swapped from the request
type RateProvider interface {
GetRate(ctx context.Context, fromCode, toCode string) (coinmarketcap.RateDTO, error)
}
// ConvertCurrencyUseCase handles currency conversion operations
type ConvertCurrencyUseCase struct {
rateProvider RateProvider
converter *domain.CurrencyConverter
}
// NewConvertCurrencyUseCase creates a new ConvertCurrencyUseCase
func NewConvertCurrencyUseCase(rateProvider RateProvider, converter *domain.CurrencyConverter) *ConvertCurrencyUseCase {
return &ConvertCurrencyUseCase{
rateProvider: rateProvider,
converter: converter,
}
}
// Execute performs currency conversion
func (uc *ConvertCurrencyUseCase) Execute(ctx context.Context, amount, fromCode, toCode string) (domain.Money, error) {
// Normalize currency codes to uppercase for consistency
fromCode = strings.ToUpper(strings.TrimSpace(fromCode))
toCode = strings.ToUpper(strings.TrimSpace(toCode))
// Create currencies with uniform precision
fromCurrency, err := domain.NewCurrency(fromCode, fromCode, CurrencyPrecision)
if err != nil {
return domain.Money{}, err
}
// Create money object from input
money, err := domain.NewMoney(amount, fromCurrency)
if err != nil {
return domain.Money{}, err
}
// Get exchange rate DTO from provider
rateDTO, err := uc.rateProvider.GetRate(ctx, fromCode, toCode)
if err != nil {
return domain.Money{}, err
}
// Convert DTO to domain Rate (domain logic)
rate, err := uc.createDomainRate(rateDTO, fromCode, toCode)
if err != nil {
return domain.Money{}, err
}
// Convert using domain service
result, err := uc.converter.Convert(money, rate)
if err != nil {
return domain.Money{}, err
}
return result, nil
}
// createDomainRate converts RateDTO to domain.Rate with proper domain validation
func (uc *ConvertCurrencyUseCase) createDomainRate(dto coinmarketcap.RateDTO, requestedFromCode, requestedToCode string) (domain.Rate, error) {
// Convert price to decimal with proper precision first
priceStr := fmt.Sprintf("%.*f", CurrencyPrecision, dto.Price)
rateValue, err := decimal.NewFromString(priceStr)
if err != nil {
return domain.Rate{}, fmt.Errorf("invalid price format: %v", err)
}
// Check if we got a reversed rate and handle accordingly
if dto.FromCode == requestedToCode && dto.ToCode == requestedFromCode {
// Reversed: we got BTC->USD but requested USD->BTC
// dto.FromName always contains the crypto name (Bitcoin)
if rateValue.IsZero() {
return domain.Rate{}, fmt.Errorf("cannot invert zero price")
}
fromCurrency, err := domain.NewCurrency(requestedFromCode, dto.ToName, CurrencyPrecision)
if err != nil {
return domain.Rate{}, err
}
toCurrency, err := domain.NewCurrency(requestedToCode, dto.FromName, CurrencyPrecision)
if err != nil {
return domain.Rate{}, err
}
invertedRate := decimal.NewFromInt(1).Div(rateValue)
return domain.NewRate(fromCurrency, toCurrency, invertedRate, dto.Source)
}
// Direct: we got exactly what we requested
// dto.FromName contains the crypto name
fromCurrency, err := domain.NewCurrency(dto.FromCode, dto.FromName, CurrencyPrecision)
if err != nil {
return domain.Rate{}, err
}
toCurrency, err := domain.NewCurrency(dto.ToCode, dto.ToName, CurrencyPrecision)
if err != nil {
return domain.Rate{}, err
}
return domain.NewRate(fromCurrency, toCurrency, rateValue, dto.Source)
}

View file

@ -0,0 +1,146 @@
package app
import (
"context"
"converter/app/mocks"
"converter/domain"
"converter/infrastructure/coinmarketcap"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/mock"
)
func TestConvertCurrencyUseCase_Execute(t *testing.T) {
tests := []struct {
name string
amount string
fromCode string
toCode string
wantCode string
wantErr bool
setupMock func(*mocks.RateProvider)
}{
{
name: "direct conversion - crypto to fiat",
amount: "1.0",
fromCode: "BTC",
toCode: "USD",
wantCode: "USD",
wantErr: false,
setupMock: func(m *mocks.RateProvider) {
// Direct rate: BTC->USD
rateDTO := coinmarketcap.RateDTO{
FromCode: "BTC", // Crypto symbol
ToCode: "USD", // Fiat code
FromName: "Bitcoin", // Crypto name from API
ToName: "USD", // Fiat code
Price: 50000.0, // BTC price in USD
Source: "coinmarketcap",
}
m.On("GetRate", mock.Anything, "BTC", "USD").Return(rateDTO, nil)
},
},
{
name: "reversed conversion - fiat to crypto",
amount: "50000.0",
fromCode: "USD",
toCode: "BTC",
wantCode: "BTC",
wantErr: false,
setupMock: func(m *mocks.RateProvider) {
// Reversed rate: requested USD->BTC but got BTC->USD
rateDTO := coinmarketcap.RateDTO{
FromCode: "BTC", // What API actually returned
ToCode: "USD", // What API actually returned
FromName: "Bitcoin", // Crypto name from API
ToName: "USD", // Fiat code
Price: 50000.0, // BTC price in USD (will be inverted)
Source: "coinmarketcap",
}
m.On("GetRate", mock.Anything, "USD", "BTC").Return(rateDTO, nil)
},
},
{
name: "invalid amount",
amount: "invalid",
fromCode: "USD",
toCode: "BTC",
wantCode: "",
wantErr: true,
setupMock: func(m *mocks.RateProvider) {
// No mock setup needed - error occurs before calling provider
},
},
{
name: "negative amount",
amount: "-50.00",
fromCode: "USD",
toCode: "BTC",
wantCode: "",
wantErr: true,
setupMock: func(m *mocks.RateProvider) {
// No mock setup needed - error occurs before calling provider
},
},
{
name: "rate not found",
amount: "100.00",
fromCode: "XYZ",
toCode: "ABC",
wantCode: "",
wantErr: true,
setupMock: func(m *mocks.RateProvider) {
m.On("GetRate", mock.Anything, "XYZ", "ABC").Return(coinmarketcap.RateDTO{}, domain.ErrRateNotFound)
},
},
{
name: "provider error",
amount: "100.00",
fromCode: "USD",
toCode: "INVALID",
wantCode: "",
wantErr: true,
setupMock: func(m *mocks.RateProvider) {
m.On("GetRate", mock.Anything, "USD", "INVALID").Return(coinmarketcap.RateDTO{}, domain.ErrUnsupportedCurrency)
},
},
{
name: "empty currency code",
amount: "100.00",
fromCode: "",
toCode: "BTC",
wantCode: "",
wantErr: true,
setupMock: func(m *mocks.RateProvider) {
// No mock setup needed - error occurs before calling provider
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
// Create fresh mock and use case for each test
mockProvider := mocks.NewRateProvider(t)
converter := domain.NewCurrencyConverter()
useCase := NewConvertCurrencyUseCase(mockProvider, converter)
// Setup mock expectations
tt.setupMock(mockProvider)
// Execute
result, err := useCase.Execute(context.Background(), tt.amount, tt.fromCode, tt.toCode)
// Assert error expectations
if tt.wantErr {
assert.Error(t, err, "Execute() should return error")
return
}
// Assert success case
assert.NoError(t, err, "Execute() should not return error")
assert.Equal(t, tt.wantCode, result.Currency.Code, "Currency code mismatch")
assert.True(t, result.Amount.IsPositive(), "Amount should be positive")
})
}
}

57
app/mocks/RateProvider.go Normal file
View file

@ -0,0 +1,57 @@
// Code generated by mockery v2.53.5. DO NOT EDIT.
package mocks
import (
context "context"
coinmarketcap "converter/infrastructure/coinmarketcap"
mock "github.com/stretchr/testify/mock"
)
// RateProvider is an autogenerated mock type for the RateProvider type
type RateProvider struct {
mock.Mock
}
// GetRate provides a mock function with given fields: ctx, fromCode, toCode
func (_m *RateProvider) GetRate(ctx context.Context, fromCode string, toCode string) (coinmarketcap.RateDTO, error) {
ret := _m.Called(ctx, fromCode, toCode)
if len(ret) == 0 {
panic("no return value specified for GetRate")
}
var r0 coinmarketcap.RateDTO
var r1 error
if rf, ok := ret.Get(0).(func(context.Context, string, string) (coinmarketcap.RateDTO, error)); ok {
return rf(ctx, fromCode, toCode)
}
if rf, ok := ret.Get(0).(func(context.Context, string, string) coinmarketcap.RateDTO); ok {
r0 = rf(ctx, fromCode, toCode)
} else {
r0 = ret.Get(0).(coinmarketcap.RateDTO)
}
if rf, ok := ret.Get(1).(func(context.Context, string, string) error); ok {
r1 = rf(ctx, fromCode, toCode)
} else {
r1 = ret.Error(1)
}
return r0, r1
}
// NewRateProvider creates a new instance of RateProvider. It also registers a testing interface on the mock and a cleanup function to assert the mocks expectations.
// The first argument is typically a *testing.T value.
func NewRateProvider(t interface {
mock.TestingT
Cleanup(func())
}) *RateProvider {
mock := &RateProvider{}
mock.Mock.Test(t)
t.Cleanup(func() { mock.AssertExpectations(t) })
return mock
}

70
cmd/converter/main.go Normal file
View file

@ -0,0 +1,70 @@
package main
import (
"context"
"converter/app"
"converter/domain"
"converter/infrastructure/coinmarketcap"
"fmt"
"os"
"os/signal"
"syscall"
"time"
)
const (
expectedArgs = 4 // program name + 3 arguments
apiKeyEnvVar = "CMC_API_KEY"
)
func main() {
// Check command line arguments
if len(os.Args) != expectedArgs {
fmt.Fprintf(os.Stderr, "Usage: %s <amount> <from_currency> <to_currency>\n", os.Args[0])
fmt.Fprintf(os.Stderr, "Example: %s 100.50 USD BTC\n", os.Args[0])
os.Exit(1)
}
// Parse arguments
amount := os.Args[1]
fromCurrency := os.Args[2]
toCurrency := os.Args[3]
// Get API key from environment
apiKey := os.Getenv(apiKeyEnvVar)
if apiKey == "" {
fmt.Fprintf(os.Stderr, "Error: %s environment variable is required\n", apiKeyEnvVar)
fmt.Fprintf(os.Stderr, "Please set your CoinMarketCap API key:\n")
fmt.Fprintf(os.Stderr, "export %s=your_api_key_here\n", apiKeyEnvVar)
os.Exit(1)
}
// Initialize dependencies
client := coinmarketcap.NewClient(apiKey)
converter := domain.NewCurrencyConverter()
useCase := app.NewConvertCurrencyUseCase(client, converter)
// Create context with timeout and signal handling
ctx, cancel := context.WithTimeout(context.Background(), 30*time.Second)
defer cancel()
// Set up graceful shutdown on interrupt signals
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, syscall.SIGINT, syscall.SIGTERM)
go func() {
<-sigChan
fmt.Fprintf(os.Stderr, "\nReceived interrupt signal, shutting down...\n")
cancel()
}()
// Execute conversion
result, err := useCase.Execute(ctx, amount, fromCurrency, toCurrency)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
// Output result
fmt.Printf("%s %s\n", result.Amount.StringFixed(8), result.Currency.Code)
}